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Applied Field/Frequency Dependency of Propagation

in Axially Magnetized Ferrite Waveguides
Bernice M. Dillon and Andrew A. P. Gibson

Abstract—Vector finite element solvers are used to calculate

phase constants and cutoff wave numbers in waveguides con-
taining axially magnetized ferrite media. For phase constant

calculations, ferrite characteristics are specified in terms of the

applied field, frequency, and material characteristics including
saturation magnetization and data from the hysteresis curve.
Periodic boundary conditions are used with both finite element

formulations to improve efficiency by reducing the size of the
meshed region. Cutoff planes and phase shifts have been cal-
culated for two examples, a Reggia-Spencer phase shifter and

a ridged Faraday rotation section. In each case comparisons
are made with measured data in the literature. The ridged Far-
aday section was found to be multimode over the design band-
width. For completeness, the geometrical dependency of the

cutoff plane in circular quadruply ridged waveguides is enun-
ciated and compared with available experimental results.

INTRODUCTION

A XIALLY magnetized gyromagnetic waveguide struc-

tures are of ongoing interest as microwave phase

shifter and control components. Cutoff planes and phase

constants of regular axisymmetric cross sections are well

understood and can be calculated analytically [1]. More

complicated inhomogeneous waveguide cross sections re-

quire analysis using a numerical method. Finite elements

are often chosen because of the ease with which arbitrar-

ily shaped structures can be modeled. A number of dif-

ferent formulations have been proposed [2]-[4]. Trouble-

some spurious solutions in vector formulations can be now

avoided and a number of remedies have recently been re-

viewed [5]. Another useful development is a formulation

which allows the direct calculation of the modal phase

constant rather than the wave number [6]. Recently this

formulation has been applied successfully to axially mag-

netized axisymmetric waveguides [7]. In this paper, cal-

culation of the modal characteristics for more practical

inhomogeneous ferrite waveguide geometries is under-

taken.

For design purposes, it is preferable to relate the wave-

guide characteristics to experimental material properties
such as applied bias field and frequency rather than the

entries of the tensor permeability (K, K). Analytical solu-

tions of the characteristic equations and numerical calcu-
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lations are commonly presented in terms of these tensor

entries [1]–[4], [5], [7]. Although this approach suitably

describes the properties of the waveguide it is difficult to

relate results to measured data because of the frequency

dependency of (K, V). An extension to the phase constant

formulation is presented here to include specification of

ferrite parameters in terms of experimental data. Formu-

las to relate magnetization, frequency, applied field, and

material characteristics are chosen to include partially

magnetized states [8]. Waveguide symmetry is used where

possible to reduce the size of the meshed region and solves

the geomet~ more efficiently [9]. Axially magnetized fer-

rite waveguides do not support conventional reflection

symmetry so mirror planes cannot be used. However,

these waveguides usually exhibit some rotational sym-

metry. In finite element analysis, rotational symmetry is

modeled using periodic boundary conditions. These types

of boundary constraints are often used in low-frequency

analysis of electrical machines [11]; however their use in

high-frequency work is uncommon. The periodic bound-

ary constraints relate the tangential field components along

two azimuthal planes of the waveguides. These boundary

constraints can be used with both the wave number and

the phase constant formulations.

Two examples from the literature are chosen to illus-

trate the usefulness of finite element analysis in practical

device design. Reggia-Spencer phase shifters produce

large phase shifts in a partially magnetized state[11]-[13].

In accordance with the suppressed-rotation theory of op-

eration [12], the finite element calculations illustrate how

one orthogonal mode is below cutoff, whereas the other

is above and will propagate. Phase shift calculations with

specified frequency and applied field agree with experi-

mental behavior. Quadruply ridged circular waveguides

containing ferrite rods are designed to give broadband

Faraday rotation [14] -[16], Phase shift calculations for

these geometries agree with experimental results. Cutoff

calculations show that care must be taken not to excite a

higher order mode which is observed to have a cutoff close

to that of the dominant operating mode. Results are also
presented to illustrate the variation of the cutoff planes

with ridge size in an empty quadrupl y ridged waveguide.

These results agree with experimental results and also in-

dicate that the higher-order mode in the quadruply ridged

Faraday rotation section is related to one of the circularly

polarized TE21 modes in a circular waveguide.
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FINITE ELEMENT ANALYSIS

The time-harmonic magnetic field within a waveguide

containing gyromagnetic media satisfies the vector wave

equation:

V X (e;% X H) – k;jl;H= O (1)

where k. is the wave number of free space. In the usual

way, the waveguide is assumed to be uniform in the z

direction, so all field components have a z-dependence of

e–~pz where ~ is the phase constant. For inhomogeneous

waveguides containing ferrite, both the $calar relative

permittivity e, and the tensor relative permeability ji, are

functions of position.

For design purposes, two types of calculations on a

waveguide cross section are required to fully determine

its modal characteristics: calculation of the modal hier-

archy in the cutoff plane identifies all modes which may

propagate at a particular frequency; calculation of the

phase constant of the propagating modes at a specified

frequency gives the dispersion associated with the mode.

As described in [7] the finite element (FE) method can be

used to solve both types of problems. The functional used

in each case are different but the solution procedure, in-

cluding, for example, element assembly and imposition

of bounda~ constraints, etc., is essentially the same. Thd

cutoff plane can be calculated using the vector field func-

tional first described by Berk [17] and since then widely

used [5], With this functional, the phase constant @ is

specified and the wave number is calculated as the eigen-

value. To evaluate the phase constants at a specified fre-

quency, a functional in terms of transformed field com-

ponents is used [6], [7]. The frequency is specified and

the eigenvalues correspond to 82. In both cases the eigen-

vectors correspond to the magnetic field of the modes.

Modeling Saturated and Partially Magnetized Ferrites

Analytical phase constant and cutoff plane calculations

in ferrite waveguides are often presented in terms of the

ratio of the off diagonal to main diagonal permeability

tensor entries [1], [18], This parameter is chosen for

mathematical convenience, As it is a function of the fre-

quency, applied field, and magnetization, it is not easy to

relate the predicted characteristics to measured results. For

waveguide design purposes, calculations in terms of either

frequency or applied field are more useful and can be

readily compared with measured data,

Most other finite element solvers for ferrite waveguides

described in the literature are based on the wave number

formulation. Both Konrad [2] and Wang and Ida [3] cal-

culate resonant frequencies in axially magnetized cavi-

ties. Gibson and Helszajn [4] study the modal character-

istics of elliptical ferrite waveguides. In each case, the

tensor permeability used is of the form

[1
P –jK o

~,= jK p O (2)

o 0 /..Lu

where an axial bias field has been assumed. The values of

the tensor components are specified and results are c)ften

presented in terms of K/p. The functional for the wave

number cannot easily be extended to include the fre-

quency dependence of the ferrite materials. As shown in

the Appendix, the resulting matrix equation will not be a

standard eigenvalue problem. Thus, for calculation of

cutoff wave numbers, the ferrite is specified in terms of K

and p as given in (2).

Compared with wave number formulations, finite ele-

ment functional with eigen-phase solutions have one ad-

ditional advantage (exploited here), that ferrite character-

istics can be incorporated into the formulation. By

specifying the ferrite characteristics in terms of a set of

experimental parameters, the value of the tensor compo-

nents for a signal frequency and applied field can be cal-

culated. The complicated magnetic behavior of ferrites,

especially if partially magnetized, means that a full the-

oretical model is not availab~e [19]. For saturated ferrites,

the relationship between the tensor entries and the mater-

ial characteristics is well-known [1], [18], [19]. The

value of the magnetization is known and for any applied

field and frequency the tensor components can be crdcu-

lated. Difficulties arise for partially magnetized ferrites

where the value of the magnetization for a particular ap-

plied field is not known. A set of formulas suitable for all

magnetizations higher than the remanence level, have

been proposed by Hansson and Filipsson [8]. The values

of the tensor components in (2) are given as [8]:

P = Po + (1 – /..Lo)p3’2+
q2H&

(qHo)z – C02

(,@4

K= (7@o)2– u 2
(3)

where u is the frequency of operation, Ho is the internal

field and q is the gyromagnetic ratio. The variable p isi the

ratio of the magnetization M to the saturation magnetiza-

tion M, [8]:

M

{

1
p=~=al+(l– al) coth(a2Ho)— —

1
(4)

s a2Ho

where a 1 and a2 are constants derived from the hysteresis

curve of the material-al is equal to the ratio of the re-

manent and saturation fiagnetizations and a2 is related to

the slope of dB/dH\~ = o. In (4), PO is the scalar permea-

bility in the demagnetized state

(5)

where the effects of the anisotropy field have been ne-

glected. The values predicted by these formulas agree rea-

sonably well with measured data for a range of ferrites

[8]. These formulas have been incorporated into the FE

phase constant solver so that the ferrite is specified in
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terms of material characteristics, an applied field, and a

frequency. Comparisons can then be easily made between

measured and calculated results.

Periodic Boundary Conditions

Vector finite element solutions of waveguide cross sec-

tions is a computationally expensive procedure. Reduc-

tions in the size of the meshed region of the waveguide

cross section can lead to significant savings in computer

time. In waveguide geometries with materials character-

ized by scalar material properties, mirror planes of sym-

metry are used to reduce the size of the meshed region

[9]. The mirror planes are modeled as electric or magnetic

walls, Waveguides with axially magnetized ferrite media

do not support mirror symmetry. The bias magnetic field

along the direction of propagation is an axial vector and

hence it is never mapped onto itself by a reflection in the

transverse plane of the waveguide. However, these wave-

guides can support rotational symmet~: both the wave-

guide geomet~ and the bias field can be mapped onto

themselves by a rotation of a fractional part of 360°.

Rotational symmetry can be used to relate the vector

field components along two azimuthal planes in the wave-

guide to each other

H(r, !9) = m. ‘ H(l-, e + @) (6)

where @is the angle of rotation. The matrix m is a 3 x 3

matrix whose values are defined by the symmetry of the

required modal solution. In general, for a waveguide with

rotational symmetry of@ = 360/n, each of its modes will

exhibit one of n possible symmetries. Thus, to calculate

all the modes, there are n sets of rotational boundary con-

ditions which constrain the tangential field components

along the azimuthal planes on the section @ of the wave-

guide. Each set of rotational boundary conditions has a

unique m matrix in (6), A systematic procedure for cal-

culating the components of the matrix uses the fact that

after n rotations each mode is mapped onto itself. The

matrix m is given as

[

cos @ sin @ O

~=~. z –sin @ cos @ O
1

(7)

LOOIJ

where ai is one of the nth roots of unity and the matrix

on the right-hand side is the standard transformation ma-

trix for a rotation of an angle @. For n = 2, the corre-

sponding a = {1, –1} and for the case of n = 4, a =

{i, –i, 1, –1}.

Equations (6) and (7) are used to specify the relation-

ship between the tangential field components of the modes

along the azimuthal planes of the waveguide. This rela-

tionship can be incorporated into either FE formulation as

a periodic boundary condition. These types of boundary

conditions do not alter the symmetry of the matrix nor do

they involve evaluating any line integrals over the mesh

boundaries, Periodic boundary conditions have not been

widely used in waveguide analysis. One reason is that for

rotational symmetry with n > 2, the components of the

matrix m in (6) are often complex. Thus, even wave-

guides containing scalar lossless media generate a com-

plex matrix equation. For these geometries it is more ef-

ficient to use reflection symmetry to reduce the size of the

mesh because the matrices involved remain real. With

ferrite media however, the matrices are complex in any

case and so the use of periodic boundary conditions to

reduce the size of the mesh is appropriate.

REGGIA–SPENCER PHASE SHIFTER

Rectangular waveguides with a centrally positioned

ferrite rod are used as variable phase shifters. This type

of phase shifter, first proposed by Reggia and Spencer

[11], usually operates at low applied dc fields where the

differential phase shift varies rapidly with applied dc field.

A typical geomet~ is illustrated in Fig. 1. Only rotational

symmetry can be used to reduce the size of the mesh be-

cause of the axially magnetized ferrite rod. This means

that half the structure must be modeled instead of a quarter

which could be used with mirror planes if the structure

contained scalar media only. About 20 covariant-projec-

tion elements [20] were used to construct the mesh for the

following calculations.

Cutoff Planes Calculations

Fig. 2 shows the cutoff plane variation of the dominant

mode and the cross-polarized higher order mode with the

size of the ferrite rod. Herd, Rosenbaum, and Boyd [12]

proposed a theory of suppressed rotation to explain the

mechanism of phase shifting. According to this theory,

the large phase shifts are due to tensor-induced coupling

between the dominant mode and a cross-polarized eva-

nescent mode, The TEIO dominant linear-polarized mode

in an empty rectangular waveguide will propagate as an

elliptically polarized hybrid ILEIO mode in the ferrite-

loaded waveguide. From Fig. 2, the optimum width of

ferrite can be chosen for any required frequency of oper-

ation. For large phase shifts, the rod size is ideally con-

strained so that the cross-polarized mode is just below

cutoff [11] -[13].

Phase Constant Calculations

A comparison between measured phase shift results and

FE calculations are shown in Fig. 3. These results illus-

trate the increased phase shift associated with a larger fer-

rite rod when the cross-polarized mode is close to cutoff.

The coupled mode results [12], achieved using a ferrite

slab in the waveguide, are shown for comparison. In the

FE calculations each mesh was solved twice at each fre-

quency; once with zero applied field and next with a small

applied field. The modal field plot in Fig. 4 illustrates the

concentration of the dominant mode in the ferrite region.

Calculations for the variation in phase shift with applied

field for different sized ferrites are shown in Fig. 5. The

dramatic change in phase shift for different sized ferrites
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Fig. 1. Schematic geometry of Reggia-Spencer phase shifter cross sec-
tion. b/a =0.444, 1z/a=O.222. Waveguide isair-filled except forhatched
region which is ferrite: k~a = 2.9, Cf = 13.

kca
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Fig. 2. Recalculations forthecutoffplane of thedominant andofihogonal
mode. The geometry is as shown in Fig. 1.

istypical ofthisclass ofphase shifters [11] -[13]. Forlow

values of the applied field, the FE results may not corre-

late exactly with experimental values because of the lim-

itations of the model used to characterize the ferrite [8].

However, the results in Figs. 3 and 5 indicate that the FE

solver models the behavior of these partially magnetized

phase shifters reasonably well.

QUADRUPLY RIDGED FARADAY ROTATION SECTION

Faraday rotation sections may be constructed using an

axially magnetized ferrite rod centrally positioned in a

circular waveguide, When the ferrite is ma~netized, the
circular polarized modes in the waveguide travel at dif-

ferent phase velocities. For wide-band applications, a

nearly constant rotation with frequency is required. One

way of achieving this is to lower the cutoff frequency of

the propagating mode, thereby reducing the effect of dis-

persion. A typical quadruply ridged Faraday rotation cross

Phase shift (degrees/inch)
180

120

/

/

EXP

c/a
=0.3

y~...

c/a
60 =0.2

CMT

o-t___: _______L__... . . _ _l..._–— ------- L
5.53.5 4 4.5 kna 5

Fig. 3. Variation in differential phase shift withvfrequency. The coupled
mode (CMT) results were calculated for b/h = 1. The finite element
method (FEM) results were obtained using the geometry in Fig. 1 with H~C
= 0.0 and H~C = 1 Oe. Both the coupled mode and measured data [EXP]
are from [12].

r \ \ \ i I

e+52+%v/

Fig. 4. Transverse magnetic field for the dominant elliptically polarized
UE,O mode. ZI=c = 10 0., LOG = d.d. Half the geometry in Fig. 1 was
meshed.

section is illustrated in Fig. 6. This type of geometry has

been proposed by Chait and Sakiotis [14] among others,

to improve the bandwidth characteristics of Faraday ro-

tator sections.
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Phase Shift (degrees/inch)
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c/a = 0.2

0 40 80 120 160

Applied Field (Oe)

Fig. 5. Finite element calculations for the variation in differential phase
shift with applieddc magnetic field fordifferent femite widths, koa = 4.4.

I

2a ]t

Fig. 6. Schematic geometry of quadruply ridged Faraday rotator. a =

11.944 mm, b = 6.426 mm, c = t = 3.175 mm. Waveguide is air-filled
except for hatched region which is TT-390 ferrite: M. = 2150 G, H~c =
3840e, andef= 12.7.

Cutoff Plane Calculations

The cutoff wave numbers of a quadruply ridged circular

waveguide with an axially magnetized ferrite rod (Fig. 6)

were evaluated. These calculations were done over a

quarter section of the guide using a mesh of about 20 co-

variant projection elements with rotational bounda~ con-
ditions. Cutoff plane calculations for an axisymmetric fer-

rite waveguide and a quadruply ridged ferrite waveguide

are shown in Fig. 7. ln general, the ridges lower the cutoff

wave numbers of the HEm. modes and increase the cutoffs

of the EHm. modes. This is similar to the behavior of the
corresponding modes in the empty ridge case as described

in the next section. For axis ymmetric structures, Waldron

[1] has shown that the cutoffs of the HE modes is unaf-

fected by the magnetization (K/p) whereas the cutoffs of

the EH modes split. FE calculations indicate that the in-

troduction of the ridges does not affect this behavior. It is

also worth noting that the ferrite-loaded ridged waveguide

supports an HE21 mode close in cutoff to the dominant

fc(GHz)
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Fig. 7. FE calculations for the cutoff wave numbers in the Faraday rota-

tion section with d/a = 0.0 [—0—] and with d/a = 0.73 (—*—).

Faraday Rotation (degrees)

’60~

120- d/a = 0.73
FEM _

J
w
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40

I

d/a ❑ 0.0

o~8 8.5 9.5 10

Frequen;y (GHz)

Fig. 8. Faraday rotation for a circular waveguide, with and without ridges.

The length of the guide is 50.8 mm.

pair of modes. The quadruply ridged Faraday rotation

section are therefore multimode over the proposed band-
width of 8–9. 6 GHz.

Phase Constant Calculations

The Faraday rotation in a given length of ferrite can be

calculated by evaluating the differential phase constants

of the dominant HE+,, ~ circularly polarized modes, Iden-

tical meshes and boundary conditions to those used with

the cutoff plane calculations were employed for evalua-

tion of the phase constants. Each mesh was solved twice

to obtain the positive and negative circularly polarized

modes. Fig. 8 shows the calculated phase shift of the Far-

aday rotator section in Fig. 6, with and without ridges.
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There is a significant improvement in the bandwidth when

the ridges are in place. Measured data for the improve-

ment in a 900 rotator based on a similar geometry de-

scribed in [14] is also shown in Fig. 8 for comparison.

The reduced phase shift in the measured results may be

due to dielectric loading which was possibly used together

with the ridges to enhance the bandwidth characteristics

of the rotator. In addition, the ferrite rod is often tapered

at both ends to improve matching. No allowance was

made for this in the finite element calculations where a

uniform rod was assumed.

kca

2~—

d=O.600,
% *.
,U %

1 - ‘d= O.667 —

CUTOFF PLANES OF EMPTY QUADRUPLY RIDGED

WAVEGUIDES

In the design of the rotator, Chait and Sakiotis experi-

mentally investigated the effect of ridges on the cutoff

wave number of the dominant mode in an empty circular

waveguide. These measured results were used to check

the accuracy of the FE cutoff wave number calculations

and good agreement was found as shown in Fig. 9. To

examine the modal hierarchy of these waveguides in more

detail, the geometrical dependence of the cutoffs of the

first few modes was studied. Ridge length was found to

have a more significant effect than ridge thickness. Fig.

10 shows the variation in cutoff frequency with ridge

length for four infinitely thin ridges. These calculations

were done by modeling one quarter of the waveguide ge-

ometry using up to 40 covariant projection elements. Re-

flection symmetry was used to specify the boundary con-

ditions and so there were three sets of modal solutions:

two magnetic walls (MM), magnetic and electric walls

(ME), and two electric walls (EE). In Fig. 9 the modes

are labeled according to their nomenclature in a circular

waveguide. The mode nomenclature for circular guides

assumes degeneracy between clockwise and anticlock-

wise mn modes (m > O). The presence of the ridges up-

sets the degeneracy in pairs of TE and TM modes which

do not satisfy the mixed ME boundary conditions on a

quarter section. In Fig. 9 one of the TEZI modes satisfies

the EE boundary condition and so is unaffected; however,

the cutoff of the other TEZI mode which satisfies the MM

boundary conditions tends towards zero as the ridges in-

crease in length. In general, the ridges increase the cutoff

values of the TM modes and decrease those of the TE

modes which do not satisfy the EE boundary condition.

These calculations show that the cutoff of the dominant

pair of modes is substantially reduced for fairly long ridges

d/a >0.6 with moderate thickness. This agrees with the

conclusions reached in [14]. Chait and Sakiotis [14] do

not investigate the effect of the ridges on the cutoffs of

any other mode apart from the dominant mode, Rong et

al, [16] use a combined boundary element and mode ex-

pansion method to calculate the modes in similar wave-

guides. They provide data for the cutoffs of both the dom-
inant TE11 modes and the TM 11 modes only. Note that

Fig. 10 shows that the cutoff of one of the circularly po-

larized TEZI modes is reduced significantly by the ridges.

6.05 0.1 t/a 0.15 0.2

Fig. 9. Comparison between calculated finite element [*] results and mea-
surements [14] for the variation in cutoff of the dominant TE+ 1,I modes
with ridge thickness.

Frequency (GHz)

* w w’

1
9 - TM;,

0’ 1 1
0 0.25 d/a 0.5 0.75

Fig. 10. FE calculations for the variation of the modal cutoff wave num
hers with length of ridges. t = O.

CONCLUSIONS

Finite element methods have been used to evaluate the
modal characteristics of practical inhomogeneous a ~ially

magnetized ferrite waveguides. A complete description of

the two functional and the FE solution schemes used here

can be found in [7]. Two aspects of the formulation which

have been extended to allow easier modeling of practical

geometries are described. Ferrite materials are character-

ized in the phase constant formulation using standard ma-

terial data, the applied bias field, and the frequency. The

formulas used to relate magnetization, frequency, applied

field, and material characteristics allow modeling of the

partially magnetized states so long as the applied bias field
is above remanence. Secondly, rotational symmetry is

used to define appropriate periodic boundary conditions



2098 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 12, DECEMBER 1993

for the calculation of the waveguide modes on a section

of the waveguide. This means results for general non-

axisymmetric axially magnetized waveguides can be cal-

culated more efficiently. Cutoff planes, phase constants,

and modal field patterns can be calculated. Results from

two typical waveguide cross sections—a quadrttply ridged

Faraday rotation section and a Reggia-Spencer phase

shifter are described.

APPENDIX

The functional for the calculation of the cutoff wave

number is

JF(H) = , {E;lpr x q’ - k~ [H: “ j,tzit

where S is the cross section of the waveguide, * denotes

complex conjugate, and the phase constant I!3 is specified.

Both the magnetic field Hand the tensor permeability have

been split into a transverse and axial part in (A. 1). As-

suming a tensor of the form given in (2), the second term

in the integrand of (A. 1) becomes

(A.2)

where u is the unknown frequency of operation. In fer-

rites which are saturated, the relationship between the ten-

sor entries and the material characteristics is well-known

[1]:

‘30?pl’!fs
p=l+ 2 2, p,, = 1 (A.3a)

coo-u

(A.3b)

where w is the frequency of operation, ~. = qHo, M, is

the saturation magnetization, Ho is the dc applied field,

and q is the gyromagnetic ratio. Substitution for K and p

in (A.2) gives a final integrand involving terms with ratios

of OJ2/(U~ – CJz), ti3/(ti~ – ti2) as well as terms with

u 2. The corresponding matrix equation cannot be easily

solved for u using standard eigenvalue matrix routines.
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