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Applied Field/Frequency Dependency of Propagation
in Axially Magnetized Ferrite Waveguides

Bernice M. Dillon and Andrew A. P. Gibson

Abstract—Vector finite element solvers are used to calculate
phase constants and cutoff wave numbers in waveguides con-
taining axially magnetized ferrite media. For phase constant
calculations, ferrite characteristics are specified in terms of the
applied field, frequency, and material characteristics including
saturation magnetization and data from the hysteresis curve.
Periodic boundary conditions are used with both finite element
formulations to improve efficiency by reducing the size of the
meshed region. Cutoff planes and phase shifts have been cal-
culated for two examples, a Reggia-Spencer phase shifter and
a ridged Faraday rotation section. In each case comparisons
are made with measured data in the literature. The ridged Far-
aday section was found to be multimoded over the design band-
width. For completeness, the geometrical dependency of the
cutoff plane in circular quadruply ridged waveguides is enun-
ciated and compared with available experimental results.

INTRODUCTION

XIALLY magnetized gyromagnetic waveguide struc-

tures are of ongoing interest as microwave phase
shifter and control components. Cutoff planes and phase
constants of regular axisymmetric cross sections are well
understood and can be calculated analytically [1]. More
complicated inhomogeneous waveguide cross sections re-
quire analysis using a numerical method. Finite elements
are often chosen because of the ease with which arbitrar-
ily shaped structures can be modeled. A number of dif-
ferent formulations have been proposed [2]-[4]. Trouble-
some spurious solutions in vector formulations can be now
avoided and a number of remedies have recently been re-
viewed [5]. Another useful development is a formulation
which allows the direct calculation of the modal phase
constant rather than the wave number [6]. Recently this
formulation has been applied successfully to axially mag-
netized axisymmetric waveguides [7]. In this paper, cal-
culation of the modal characteristics for more practical
inhomogeneous ferrite waveguide geometries is under-
taken.

For design purposes, it is preferable to relate the wave-
guide characteristics to experimental material properties
such as applied bias field and frequency rather than the
entries of the tensor permeability (x, u). Analytical solu-
tions of the characteristic equations and numerical calcu-
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lations are commonly presented in terms of these tensor
entries [1]1-[4], [5], [7]. Although this approach suitably
describes the properties of the waveguide it is difficult to
relate results to measured data because of the frequency
dependency of (x, n). An extension to the phase constant
formulation is presented here to include specification of
ferrite parameters in terms of experimental data. Formu-
las to relate magnetization, frequency, applied field, and
material characteristics are chosen to include partially
magnetized states [8]. Waveguide symmetry is used where
possible to reduce the size of the meshed region and solves
the geometry more efficiently [9]. Axially magnetized fer-
rite waveguides do not support conventional reflection
symmetry so mirror planes cannot be used. However,
these waveguides usually exhibit some rotational sym-
metry. In finite element analysis, rotational symmetry is
modeled using periodic boundary conditions. These types
of boundary constraints are often used in low-frequency
analysis of electrical machines [11]; however their use in
high-frequency work is uncommon. The periodic bound-
ary constraints relate the tangential field components along
two azimuthal planes of the waveguides. These boundary
constraints can be used with both the wave number and
the phase constant formulations.

Two examples from the literature are chosen to illus-
trate the usefulness of finite element analysis in practical
device design. Reggia-Spencer phase shifters produce
large phase shifts in a partially magnetized state [11]-[13].
In accordance with the suppressed-rotation theory of op-
eration [12], the finite element calculations illustrate how
one orthogonal mode is below cutoff, whereas the other
is above and will propagate. Phase shift calculations with
specified frequency and applied field agree with experi-
mental behavior. Quadruply ridged circular waveguides
containing ferrite rods are designed to give broadband
Faraday rotation [14]-[16]. Phase shift calculations for
these geometries agree with experimental results. Cutoff
calculations show that care must be taken not to excite a
higher order mode which is observed to have a cutoff close
to that of the dominant operating mode. Results are also
presented to illustrate the variation of the cutoff planes
with ridge size in an empty quadruply ridged waveguide.
These results agree with experimental results and also in-
dicate that the higher-order mode in the quadruply ridged
Faraday rotation section is related to one of the circularly
polarized TE,; modes in a circular waveguide.

0018-9480/93$03.00 © 1993 IEEE
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FINITE ELEMENT ANALYSIS

The time-harmonic magnetic field within a waveguide
containing gyromagnetic media satisfies the vector wave
equation:

V X (e;'V X H) — k3j,H =0 6))

where k is the wave number of free space. In the usual
way, the waveguide is assumed to be uniform in the z
direction, so all field components have a z-dependence of
e " where @ is the phase constant. For inhomogeneous
waveguides containing ferrite, both the scalar relative
permittivity e, and the tensor relative permeability f, are
functions of position.

For design purposes, two types of calculations on a
waveguide cross section are required to fully determine
its modal characteristics: calculation of the modal hier-
archy in the cutoff plane identifies all modes which may
propagate at a particular frequency; calculation of the
phase constant of the propagating modes at a specified
frequency gives the dispersion associated with the mode.
As described in [7] the finite element (FE) method can be
used to solve both types of problems. The functionals used
in each case are different but the solution procedure, in-
cluding, for example, element assembly and imposition
of boundary constraints, etc., is essentially the same. The
cutoff plane can be calculated using the vector field func-
tional first described by Berk [17] and since then widely
used [5]. With this functional, the phase constant 8 is
specified and the wave number is calculated as the eigen-
value. To evaluate the phase constants at a specified fre-
quency, a functional in terms of transformed field com-
ponents is used [6], [7]. The frequency is specified and
the eigenvalues correspond to 3. In both cases the eigen-
vectors correspond to the magnetic field of the modes.

Modeling Saturated and Partially Magnetized Ferrites

Analytical phase constant and cutoff plane calculations
in ferrite waveguides are often presented in terms of the
ratio of the off diagonal to main diagonal permeability
tensor entries [1], [18]. This parameter is chosen for
mathematical convenience. As it is a function of the fre-
quency, applied field, and magnetization, it is not easy to
relate the predicted characteristics to measured results. For
waveguide design purposes, calculations in terms of either
frequency or applied field are more useful and can be
readily compared with measured data.

Most other finite element solvers for ferrite waveguides
described in the literature are based on the wave number
formulation. Both Konrad [2] and Wang and Ida [3] cal-
culate resonant frequencies in axially magnetized cavi-
ties. Gibson and Helszajn [4] study the modal character-
istics of elliptical ferrite waveguides. In each case, the
tensor permeability used is of the form

p —jk O
fr=|jx p O @)
0 0 g

2093

where an axial bias field has been assumed. The values of
the tensor components are specified and results are often
presented in terms of k/u. The functional for the wave
number cannot easily be extended to include the fre-
quency dependence of the ferrite materials. As shown in
the Appendix, the resulting matrix equation will not be a
standard eigenvalue problem. Thus, for calculation of
cutoff wave numbers, the ferrite is specified in terms of «
and p as given in (2).

Compared with wave number formulations, finite ele-
ment functionals with eigen-phase solutions have one ad-
ditional advantage (exploited here), that ferrite character-
istics can be incorporated into the formulation. By
specifying the ferrite characteristics in terms of a set of
experimental parameters, the value of the tensor compo-
nents for a signal frequency and applied field can be cal-
culated. The complicated magnetic behavior of ferrites,
especially if partially magnetized, means that a full the-
oretical model is not available [19]. For saturated ferrites,
the relationship between the tensor entries and the mate-
rial characteristics is well-known [1], {18], [19]. The
value of the magnetization is known and for any applied
field and frequency the tensor components can be calcu-
lated. Difficulties arise for partially magnetized ferrites
where the value of the magnetization for a particular ap-
plied field is not known. A set of formulas suitable for all
magnetizations higher than the remanence level, have
been proposed by Hansson and Filipsson [8]. The values
of the tensor components in (2) are given as [8]:

Bz = l"'(l)—.I)S/2

1" HoM

(Hp) — w?

p=po + (1= pop*? +
wnM
K~ "—"—"—">5 7>
(Hy — o’
where w is the frequency of operation, H, is the internal
field and 7 is the gyromagnetic ratio. The variable p is the
ratio of the magnetization M to the saturation magnetiza-
tion M, [8]:

©))

1
p= %s =a +0—-a) {COth (a:Ho) — a:ﬁo} C))
where a; and a, are constants derived from the hysteresis
curve of the material—a, is equal to the ratio of the re-
manent and saturation magnetizations and a, is related to
the slope of dB/dH|y—¢. In (4), o is the scalar perme-
ability in the demagnetized state

2
M) -

_1o2
=373 @
where the effects of the anisotropy field have been ne-
glected. The values predicted by these formulas agree rea-
sonably well with measured data for a range of ferrites
[8]. These formulas have been incorporated into the FE
phase constant solver so that the ferrite is specified in



2094

terms of material characteristics, an applied field, and a
frequency. Comparisons can then be easily made between
measured and calculated results.

Periodic Boundary Conditions

Vector finite element solutions of waveguide cross sec-
tions is a computationally expensive procedure. Reduc-
tions in the size of the meshed region of the waveguide
cross section can lead to significant savings in computer
time. In waveguide geometries with materials character-
ized by scalar material properties, mirror planes of sym-
metry are used to reduce the size of the meshed region
[9]. The mirror planes are modeled as electric or magnetic
walls. Waveguides with axially magnetized ferrite media
do not support mirror symmetry. The bias magnetic field
along the direction of propagation is an axial vector and
hence it is never mapped onto itself by a reflection in the
transverse plane of the waveguide. However, these wave-
guides can support rotational symmetry: both the wave-
guide geometry and the bias field can be mapped onto
themselves by a rotation of a fractional part of 360°.

Rotational symmetry can be used to relate the vector
field components along two azimuthal planes in the wave-
guide to each other

Hir,0) =m: H(r, 0 + ¢) 6)

where ¢ is the angle of rotation. The matrix misa3 X 3
matrix whose values are defined by the symmetry of the
required modal solution. In general, for a waveguide with
rotational symmetry of ¢ = 360 /n, each of its modes will
exhibit one of n possible symmetries. Thus, to calculate
all the modes, there are n sets of rotational boundary con-
ditions which constrain the tangential field components
along the azimuthal planes on the section ¢ of the wave-
guide. Each set of rotational boundary conditions has a
unique m matrix in (6). A systematic procedure for cal-
culating the components of the matrix uses the fact that
after n rotations each mode is mapped onto itself. The
matrix m is given as

cos¢ sing O
m=oqo;| —sin¢g cos¢p O @)
0 0 1

where «; is one of the ath roots of unity and the matrix
on the right-hand side is the standard transformation ma-
trix for a rotation of an angle ¢. For n = 2, the corre-
sponding « = {1, —1} and for the case of n = 4, a =
{i, —i, 1, —1}.

Equations (6) and (7) are used to specify the relation-
ship between the tangential field components of the modes
along the azimuthal planes of the waveguide. This rela-
tionship can be incorporated into either FE formulation as
a periodic boundary condition. These types of boundary
conditions do not alter the symmetry of the matrix nor do
they involve evaluating any line integrals over the mesh
boundaries. Periodic boundary conditions have not been
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widely used in waveguide analysis. One reason is that for
rotational symmetry with n > 2, the components of the
matrix m in (6) are often complex. Thus, even wave-
guides containing scalar lossless media generate a com-
plex matrix equation. For these geometries it is more ef-
ficient to use reflection symmetry to reduce the size of the
mesh because the matrices involved remain real. With
ferrite media however, the matrices are complex in any
case and so the use of periodic boundary conditions to
reduce the size of the mesh is appropriate.

REGGIA-SPENCER PHASE SHIFTER

Rectangular waveguides with a centrally positioned
ferrite rod are used as variable phase shifters. This type
of phase shifter, first proposed by Reggia and Spencer
[11], usually operates at low applied dc fields where the
differential phase shift varies rapidly with applied dc field.
A typical geometry is illustrated in Fig. 1. Only rotational
symmetry can be used to reduce the size of the mesh be-
cause of the axially magnetized ferrite rod. This means
that half the structure must be modeled instead of a quarter
which could be used with mirror planes if the structure
contained scalar media only. About 20 covariant-projec-
tion elements [20] were used to construct the mesh for the
following calculations.

Cutoff Planes Calculations

Fig. 2 shows the cutoff plane variation of the dominant
mode and the cross-polarized higher order mode with the
size of the ferrite rod. Hord, Rosenbaum, and Boyd [12]
proposed a theory of suppressed rotation to explain the

~mechanism of phase shifting. According to this theory,

the large phase shifts are due to tensor-induced coupling
between the dominant mode and a cross-polarized eva-
nescent mode. The TE;, dominant linear-polarized mode
in an empty rectangular waveguide will propagate as an
elliptically polarized hybrid HE;, mode in the ferrite-
loaded waveguide. From Fig. 2, the optimum width of
ferrite can be chosen for any required frequency of oper-
ation. For large phase shifts, the rod size is ideally con-
strained so that the cross-polarized mode is just below
cutoff [11]-[13].

Phase Constant Calculations

A comparison between measured phase shift results and
FE calculations are shown in Fig. 3. These results illus-
trate the increased phase shift associated with a larger fer-
rite rod when the cross-polarized mode is close to cutoff.
The coupled mode results [12], achieved using a ferrite
slab in the waveguide, are shown for comparison. In the
FE calculations each mesh was solved twice at each fre-
quency; once with zero applied field and next with a small
applied field. The modal field plot in Fig. 4 illustrates the
concentration of the dominant mode in the ferrite region.
Calculations for the variation in phase shift with applied
field for different sized ferrites are shown in Fig. 5. The
dramatic change in phase shift for different sized ferrites



DILLON AND GIBSON: APPLIED FIELD/FREQUENCY DEPENDENCY OF PROPAGATION

a n
Fig. 1. Schematic geometry of Reggia—Spehcer phase shifter cross sec-

tion. b/a = 0.444, h/a = 0.222. Waveguide is air-filled except for hatched
region which is ferrite: k,a = 2.9, ¢ = 13.

2 1 1 i :
0 0.1 02 ¢c/a o3 0.4

Fig. 2. FE calculations for the cutoff plane of the dominant and orthogonal
mode. The geometry is as shown in Fig. 1.

is typical of this class of phase shifters [11]-[13]. For low
values of the applied field, the FE results may not corre-
late exactly with experimental values because of the lim-
itations of the model used to characterize the ferrite [8].
However, the results in Figs. 3 and 5 indicate that the FE
solver models the behavior of these partially magnetized
phase shifters reasonably well.

QuapruprLY RIDGED FARADAY ROTATION SECTION

Faraday rotation sections may be constructed using an
axially magnetized ferrite rod centrally positioned in a
circular waveguide. When the ferrite is magnetized, the
circular polarized modes in the waveguide travel at dif-
ferent phase velocities. For wide-band applications, a
nearly constant rotation with frequency is required. One
way of achieving this is to lower the cutoff frequency of
the propagating mode, thereby reducing the effect of dis-
persion. A typical quadruply ridged Faraday rotation cross

P
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Fig. 3. Variation in differential phase shift with frequency. The coupled

mode (CMT) results were calculated for b/h = 1. The finite element
method (FEM) results were obtained using the geometry in Fig. 1 with H,.
= 0.0 and H;, = 1 Oe. Both the coupled mode and measured data [EXP]

- are from [12].

-
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Fig. 4. Transverse magnetic field for the dominant elliptically polarized

section is illustrated in Fig. 6. This type of geometry has
been proposed by Chait and Sakiotis [14] among others,
to improve the bandwidth characteristics of Faraday ro-
tator sections.
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Fig. 5. Finite element calculations for the variation in differential phase
shift with applied dc magnetic field for different ferrite widths. k,a = 4.4.

Fig. 6. Schematic geometry of quadruply ridged Faraday rotator. a =
11.944 mm, b = 6.426 mm, ¢ = t = 3.175 mm. Waveguide is air-filled
except for hatched region which is TT-390 ferrite: M, = 2150 G, H,, =
384 Oe, and ¢, = 12.7.

Cutoff Plane Calculations

The cutoff wave numbers of a quadruply ridged circular
waveguide with an axially magnetized ferrite rod (Fig. 6)
were evaluated. These calculations were done over a
quarter section of the guide using a mesh of about 20 co-
variant projection elements with rotational boundary con-
ditions. Cutoff plane caleulations for an axisymmeotric fer
rite waveguide and a quadruply ridged ferrite waveguide
are shown in Fig. 7. In general, the ridges lower the cutoff
wave numbers of the HE,,, modes and increase the cutoffs
of the EH,,, modes. This is similar to the behavior of the
corresponding modes in the empty ridge case as described
in the next section. For axisymmetric structures, Waldron
[1] has shown that the cutoffs of the HE modes is unaf-
fected by the magnetization (x /u) whereas the cutoffs of
the EH modes split. FE calculations indicate that the in-
troduction of the ridges does not affect this behavior. It is
also worth noting that the ferrite-loaded ridged waveguide
supports an HE,; mode close in cutoff to the dominant
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Fig. 7. FE calculations for the cutoff wave numbers in the Faraday rota-
tion section with d/a = 0.0 [-0O—] and with d/a =0.73 (—*—).
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Fig. 8. Faraday rotation for a circular waveguide, with and without ridges.
The length of the guide is 50.8 mm.

pair of modes. The quadruply ridged Faraday rotation
section are therefore multimoded over the proposed band-
width of 8-9.6 GHz.

Phase Constant Calculations

The Faraday rotation in a given length of ferrite can be
calculated by evaluating the differential phase constants
of the dominant HE .| , circularly polarized modes. Iden-
tical meshes and boundary conditions to those used with
the cutoff plane calculations were employed for evalua-
tion of the phase constants. Each mesh was solved twice
to obtain the positive and negative circularly polarized
modes. Fig. 8 shows the calculated phase shift of the Far-
aday rotator section in Fig. 6, with and without ridges.
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There is a significant improvement in the bandwidth when
the ridges are in place. Measured data for the improve-
ment in a 90° rotator based on a similar geometry de-
scribed in [14] is also shown in Fig. 8 for comparison.
The reduced phase shift in the measured results may be
due to dielectric loading which was possibly used together
with the ridges to enhance the bandwidth characteristics
of the rotator. In addition, the ferrite rod is often tapered
at both ends to improve matching. No allowance was
made for this in the finite element calculations where a
uniform rod was assumed.

CutorfF PLANES OF EMPTY QUADRUPLY RIDGED
W AVEGUIDES

In the design of the rotator, Chait and Sakiotis experi-
mentally investigated the effect of ridges on the cutoff
wave number of the dominant mode in an empty circular
waveguide. These measured results were used to check
the accuracy of the FE cutoff wave number calculations
and good agreement was found as shown in Fig. 9. To
examine the modal hierarchy of these waveguides in more
detail, the geometrical dependence of the cutoffs of the
first few modes was studied. Ridge length was found to
have a more significant effect than ridge thickness. Fig.
10 shows the variation in cutoff frequency with ridge
length for four infinitely thin ridges. These calculations
were done by modeling one quarter of the waveguide ge-
ometry using up to 40 covariant projection elements. Re-
flection symmetry was used to specify the boundary con-
ditions and so there were three sets of modal solutions:
two magnetic walls (MM), magnetic and electric walls
(ME), and two electric walls (EE). In Fig. 9 the modes
are labeled according to their nomenclature in a circular
wavegunide. The mode nomenclature for circular guides
assumes degeneracy between clockwise and anticlock-
wise mn modes (m > 0). The presence of the ridges up-
sets the degeneracy in pairs of TE and TM modes which
do not satisfy the mixed ME boundary conditions on a
quarter section. In Fig. 9 one of the TE,, modes satisfies
the EE boundary condition and so is unaffected; however,
the cutoff of the other TE,; mode which satisfies the MM
boundary conditions tends towards zero as the ridges in-
crease in length. In general, the ridges increase the cutoff
values of the TM modes and decrease those of the TE
modes which do not satisfy the EE boundary condition.
These calculations show that the cutoff of the dominant
pair of modes is substantiaily reduced for fairly long ridges
d/a > 0.6 with moderate thickness. This agrees with the
conclusions reached in [14]. Chait and Sakiotis [14] do
not investigate the effect of the ridges on the cutoffs of
any other mode apart from the dominant mode. Rong e¢
al. [16] use a combined boundary element and mode ex-
pansion method to calculate the modes in similar wave-
guides. They provide data for the cutoffs of both the dom-
inant TE;; modes and the TM;; modes only. Note that
Fig. 10 shows that the cutoff of one of the circularly po-
larized TE,; modes is reduced significantly by the ridges.
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Fig. 9. Comparison between calculated finite element [*] results and mea-
surements [14] for the variation in cutoff of the dominant TE., , modes
with ridge thickness.
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Fig. 10. FE calculations for the variation of the modal cutoff wave num-
bers with length of ridges. = 0.

CONCLUSIONS

Finite element methods have been used to evaluate the
modal characteristics of practical inhomogeneous axially
magnetized ferrite waveguides. A complete description of
the two functionals and the FE solution schemes used here
can be found in [7]. Two aspects of the formulation which
have been extended to allow easier modeling of practical
geometries are described. Ferrite materials are character-
ized in the phase constant formulation using standard ma-
terial data, the applied bias field, and the frequency. The
formulas used to relate magnetization, frequency, applied
field, and material characteristics allow modeling of the
partially magnetized states so long as the applied bias field
is above remanence. Secondly, rotational symmetry is
used to define appropriate periodic boundary conditions
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for the calculation of the waveguide modes on a section
of the waveguide. This means results for general non-
axisymmetric axially magnetized waveguides can be cal-
culated more efficiently. Cutoff planes, phase constants,
and modal field patterns can be calculated. Results from
two typical waveguide cross sections—a quadruply ridged
Faraday rotation section and a Reggia-Spencer phase
shifter are described.

APPENDIX

The functional for the calculation of the cutoff wave
number is

F(H) = SS tef [V X HI® — ko (H - jH,

+ Hiu H) + ;' |VH. + jBH/|?} dS  (A.1)

where § is the cross section of the waveguide, * denotes
complex conjugate, and the phase constant § is specified.
Both the magnetic field H and the tensor permeability have
been split into a transverse and axial part in (A.1). As-
suming a tensor of the form given in (2), the second term
in the integrand of (A.1) becomes

ki [H - j H, + Hp H]
= w’uoeo [H uH, + p(HYH, + HFH,)
+ jk(H}H, — H¥H,)] (A.2)

where w is the unknown frequency of operation. In fer-
rites which are saturated, the relationship between the ten-
sor entries and the material characteristics is well-known

[1]:

wonM
p=1+——-7, P =1 (A.3a)
Wy — W
M
k= s (A.3b)
wg — w

where w is the frequency of operation, wy, = nH,y, M, is
the saturation magnetization, Hy is the dc applied field,
and 7 is the gyromagnetic ratio. Substitution for x and u
in (A.2) gives a final integrand involving terms with ratios
of w?/(wg — w?), w’/(w§ — »?) as well as terms with
w”. The corresponding matrix equation cannot be easily
solved for w using standard eigenvalue matrix routines.
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